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ABSTRACT 
 

A Halo orbit about a libration point of a restricted three-body system provides 

additional opportunities for surveillance, communication, and exploratory missions in 

lieu of the classical spacecraft orbit.  Historically libration point missions have focused 

on Halo orbits and trajectories about the Sun-Earth System.  This thesis will focus on 

libration point orbit solutions in the Earth-Moon system using the restricted three body 

equations of motion with three low-thrust control functions.  These classical dynamics 

are used to design and optimize orbital trajectories about stable and unstable libration 

points of the Earth-Moon system using DIDO, a dynamic optimization software.  The 

solutions for the optimized performance are based on a quadratic cost function.  Specific 

constraints and bounds were placed on the potential solution set in order to ensure correct 

target trajectories.  This approach revealed locally optimal solutions for orbits about a 

stable and unstable libration point.     
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I. INTRODUCTION 

Libration points, also referred to as Lagrange points in the literature [Refs 1-16], 

represent equilibrium positions in the restricted three-body problem.  Of the five libration 

points, two points, L4 and L5, are stable, meaning that it is possible for a spacecraft to 

remain stationary at that point or orbit about it.  The co-linear Lagrange points L1, L2, 

and L3 are unstable; yet provide a sensitive region of stability about which a spacecraft 

may orbit.  All points are referenced from the barycenter (‘B’) of the system, which 

defines the origin in the reference frame and represents the mass center of the system.  

Figure 1 illustrates the positioning of the libration points for the Sun-Earth system, and  

L1 L2

L5

L4

L3
B

L1 L2

L5

L4

L3
B

 
Figure 1.   Sun-Earth Libration Point System 

 
 

the convention that shall be used to identify each point throughout this thesis.  In this 

figure, the Sun represents the primary body of the system, and the secondary body in the 

Earth. 

1 

The most common type of orbit about a libration point is generally referred to as a 

Halo orbit [Refs 1-12], and provides addition opportunities for surveillance, 

communications or exploratory missions.  Halo is not an acronym, the orbit is so named 



because the orbital plane does not intersect the main celestial body as a classical orbit 

does.  Instead, the orbit resembles a Halo hovering overhead as shown in Figure 2.  The 

advantage of this type of orbit over the traditional orbit is that it generally provides a 

continuous and uninterrupted view of its mission subject. 

 
 

L1

L2

L1

L2

 
Figure 2.   HALO Orbit about L2 Point of Earth-Moon System 

 

The purpose of this thesis is to design an optimal Halo orbit about a libration 

point of the Earth-Moon system, using the DIDO optimization software, which is a 

MATLAB application tool.  This optimal solution method may be additionally applied to 

any general three-body system, and at the appropriate libration point.  All libration 

missions to date have been in the Sun-Earth System.  This thesis will attempt to exploit 

the Earth Moon-System for a future communications satellite mission.   

The design criteria or specifications for the libration point orbits in this thesis are 

based on orbital period, bounds, and constraints particular to the Earth-Moon system.  

This problem is scaled and non-dimensionalized, however different masses yield unique 

mass ratios between the primary and secondary bodies, and alter the dynamics and 

boundary conditions of the problem with respect to libration point location and orbit 

optimization.  Therefore, the characteristics of the system as well as target orbits are 

important in shaping the design process.       

2 



II. BACKGROUND 

In the history of the space program, there have only been six missions to libration 

points, and all have been in the Sun-Earth system [Ref 1-2].  The first Lagrange or 

libration point mission was the International Sun-Earth Explorer-3 (ISSE-3) [Ref 3] 

launched in 1978.  ISSE-3 maintained a complex orbit shown in Figure 4, about the L1 

point to the Sun-Earth system, where it observed and 

detected solar flares and cosmic gamma ray bursts.  The 

Halo orbit allowed the spacecraft to make observations 

over one and a half million kilometers closer to the Sun 

than ISEE-1 and ISEE-2, which were in Earth orbits, and 

demonstrated the advantage and flexibility of Halo orbit 

missions.  While the two Earth based satellites re-

entered atmosphere at end of life, ISSE-3 was renamed 

International Cometary Explorer and sent to rendezvous 

with the comet, Giacobini-Zinner and flew through its 

the tail in 1985.   

Figure 3.   ISSE-3 Spacecraft [From: Ref 3] 
 
 
 

 
 

Figure 4.   ISEE-3 Mission Trajectory [From: Ref 3] 
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Figure 5.   SOHO Satellite and Trajectory [From: Ref 4] 

 

Perhaps the most famous Halo orbit mission is the Solar and Heliospheric 

Observatory (SOHO), which was launched in 1995 [Ref 4].  Like its predecessor ISSE-3, 

SOHO also orbits the L1 point of the Sun-Earth system and is dedicated to an intensive 

and continuous study of the star.   

The most unique libration point mission to date has been WIND, which was 

launched in 1994 as part of the Global Geospace Science initiative [Ref 5].  WIND 

investigated and studied plasma, and magnetic field effects in both ionispheric and 

magnetospheric phenomena, and made baseline observations in the ecliptic plane for  

 
Figure 6.   Extended WIND Mission Trajectory [From: Ref 5] 
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future missions.  Its initial trajectory included multiple passes of the Moon before settling 

into a Halo orbit about the L1 point in the Sun-Earth System.  Several months later it 

departed the L1 point for an additional lunar swing by before it initiated a series of petal 

orbits taking it out of the ecliptic.   

 
Figure 7.   Advanced Composition Explorer (ACE)  [From: Ref 6] 

 

In the tradition of SOHO, the Advanced Composition Explorer (ACE), launched 

in 1997 [Ref 6], also orbits the Sun-Earth system L1 point, and obtains more specific and 

detailed measurements.  The Microware Anisotropy Probe (MAP) was launched in 2001 

and marked the first mission to the L2 point of the Sun-Earth System, where it looks deep 

in to space to decipher the age, geometry, and size of the universe without the 

obstructions of the Earth, Sun or Moon [Ref 7]. 

 
Figure 8.   Microwave Anisotropy Probe (MAP) [From: Ref 7] 

5 



The most recent libration point mission is NASA’s Genesis, which reached the L1 

Sun-Earth point in 2001 using a Lissajous Orbit Insertion (LOI), which resembles a 

figure eight trajectory [Ref 8].  Genesis is collecting actual specimens of solar wind 

particles that it is then returning to Earth.  Future Halo mission include Darwin, the 

Infrared Space Interferometry Mission [Ref 9], which like MAP will orbit the L2 Sun-

Earth point in search of Earth-like planets using six telescopes.  Darwin is not scheduled 

to launch until 2014.  

 
Figure 9.   Genesis Lissajous Trajectory [From: Ref 8] 

 

 
Figure 10.   Darwin Telescope Flotilla [From: Ref 9] 
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III. HALO ORBIT PROBLEM FORMULATION 

A. COORDINATE SYSTEM 

 

1. Earth-Moon System 
The geometry for the restricted three-body problem consists of two coordinate 

systems, the synodic and the barycentric [Ref 13-14].  The libration points in any three-

body system exist in the rotating synodic (xS, yS, zS) coordinate system.  The barycentric 

frame is the inertial reference with respect to the Sun, and is fixed at the barycenter of the 

system.  The subscript one identifies parameters associated with primary body; Earth, and 

the subscript two identifies parameters associated with the secondary body, which for this 

system is the Moon, shown below in Figure 10. 

xS

yS

xS

yS

m2
m1

B

m2
m1

B
 

Figure 11.   Earth-Moon System Geometry 

 

2. Scaling  
The variable and units in the problem are naturally non-dimensionalized.  This 

problem is scaled using the variable *µ , which should not be confused with the 

gravitational parameter,µ  [Ref 13-14].  The location of the barycenter for the system is 

historically determined by the ratio *µ , which is both the mass ratio = 2
1 2
m

m m+
, and the 
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ratio used to scale the distance between the primary and second body of the system by 

setting that distance = 1.  For the Earth-Moon system specifically, *µ = 0.0122, where 1 

distance unit (1 DU) is equal to the distance between the Earth and the moon; 384,400 

km. 

=µ*

1

=µ*
B

µ* 1 – µ*

m1=1- µ* m2

 

x

y

x

y

B

µ* 1 – µ*

m1=1- µ* m2

1

Figure 12.   Mass and Distance Scaling for Earth-Moon System 
 
 

Distance from barycenterMass

379,710
4690
km

7.3483 x 1022

5.9742 x 1024 

kg

0.98780.0122Moon
0.01220.9878Earth
scaledscaled

Distance from barycenterMass

379,710
4690
km

7.3483 x 1022

5.9742 x 1024 

kg

0.98780.0122Moon
0.01220.9878Earth
scaledscaled

 
Table 1. Mass and Distances for Earth-Moon System 

 

3. Spacecraft Reference and Control 

The controls of the spacecraft are simply defined by three thrust directions and are 

referenced to the synodic system (Tx, Ty, Tz) as shown on the following page in Figure 

12.  In this figure, the vector R is referenced from the origin, or the barycenter of the 

system.  The spacecraft is also referenced from the primary (r1) and secondary (r2) bodies 

of the system for the purpose of formulating the spacecraft dynamics, which are shown in 

Figure 13 along with their derivation for use in the equations of motion.  The thrust terms 
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represent the control function of the spacecraft based on accelerations (ax, ay, az).  

Accelerations are used in the formulating the dynamics in order to simplify the problem 

without the need to select or consider specific propulsion ratings based on predicted mass 

flow rates and ISP performance.   

R

L2

Tz

Ty

Tx

B

R

L2

Tz

Ty

Tx

R

L2

Tz

Ty

Tx
Tz

Ty

Tx

B

 

ys

xs

zs

ys

xs

zs

ys

xs

zs

Figure 13.   Spacecraft Reference 

 

B. EQUATIONS OF MOTION 
The following equations are the restricted three body equations of motion tailored 

to the problem [Refs 10,13-14], and modified to include an acceleration term (aX, aY, aZ) 

to represent the external force on the system, which is induced by the thrusting function 

of the spacecraft.  The constant, *µ  is the mass ratio of the primary and secondary 

celestial bodies of the system and is defined as *µ = 0.0122, r1 and r2 are respectively 

referenced from the primary and secondary bodies of the system to the spacecraft; 

3 3
1 2

(1 *)( *) *( 1 *)2 X
x xx y x a

r r
µ µ µ µ− + − +

− − = − − +  eqn (1) 

3 3
1 2

(1 *) *2 Y
y yy x y a

r r
µ µ−

+ − = − − +     eqn (2) 
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3 3
1 2

(1 *) *
Z

z zz
r r

aµ µ−
= − − +      eqn (3) 

It is important to specify the spacecraft position vectors, r1 and r2, with respect to 

their reference body.  These vectors are different and alter the dynamics of the problem 

depending on whether the spacecraft is in the positive or negative x quadrant of the 

coordinate system.  This thesis focuses on solutions at the L2 and L4 libration points, 

whose locations for this problem are defined in the positive x quadrant.  The definition of 

r1 and r2 is illustrated below in Figure 13 and in equations (4-5); 

x

y

x

y
spacecraft

r1

r2

m2m1
µ*

B
1-µ*

x

spacecraft

r1

r2

m2m1
µ*

B
1-µ*

x

 
Figure 14.   Defining r1 and r2 

 

2 2
1 ( )r x yµ= + + + 2z      eqn (4) 

2 2
2 ( 1)r x yµ= − + + + 2z      eqn (5) 

 

C. LIBRATION POINTS 

The actual equilibrium points in the system are located in the rotating coordinate 

system by setting the out of plane velocity and acceleration to zero in the restricted three 

body equations of motion set [Refs 13-14].  The thrust or acceleration term is also 

dropped out in order to find the stationary libration points in the rotating frame.   

3
1 2

(1 *)( *) *( 1 *)x xx
r r 3

µ µ µ µ− + − +
= +    eqn (6) 
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3
1 2

(1 *) *yy
r r 3

yµ µ−
= +       eqn (7) 

3
1 2

(1 *) *0 z
r r 3

zµ µ−
= +       eqn (8) 

In order for eqn (8) to be satisfied, z must equal zero, therefore any equilibrium 

position in the Lagrange system must be in the same or orbital plane (xy) as the primary 

(m1) and secondary mass (m2).  Eqn (7) can be further simplified below by setting y=0 in 

eqn (9).  

3
1 2

(1 *) *0 (1y
r r 3 )µ µ−

= − +      eqn (9) 

and then solving for three co-linear Lagrange points on the x axis (L1, L2, L3), which are 

the three real roots of eqn (10). 

3 3
1 2

(1 *)( *) *( 1 *) 0x xx
r r

µ µ µ µ− + − +
− − =    eqn (10) 

Substituting eqns (4) and (5) into eqn (10) and simplifying yields the following equation; 

2

(1 *) * 0
( *) ( 1 *)

x
x x

µ µ
µ µ

−
− +

+ − +
=

2

µ

µ

    eqn (11) 

The solution to eqn (10) and the locations of the three co-linear libration points 

are obtained by first finding the three real roots to the Euler quintic equations [Ref 15] 

shown in eqn (12); 

5 4 3
1 2 1 2 1 2 2 3

2 3 2 3

(m +m )x +(3m +2m )x +(3m +m )x - (m +3m )x
         - (2m +3m )x +(m +m )=0

 eqn (12) 

or as Vallado [Ref 14] expresses in three equations, eqns (13-15) where m1 is the mass of 

the primary body, m2 is the mass of the secondary body, and m3 is the mass of the 

spacecraft, which is generally negligible in comparison. 

5 4 3 2(3 *) (3 2 *) * 2 * * 0x x x x xµ µ µ µ+ − + − − − − =   eqn (13) 

5 4 3 2(3 *) (3 2 *) * 2 * * 0x x x x xµ µ µ µ− − + − − + − =   eqn (14) 
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5 4 3 2(2 *) (1 2 *) (1 *) 2(1 *) (1 *) 0x x x x xµ µ µ µ µ+ − + + − − − − − − =  eqn (15) 

Using a numerical solution method, and substituting the mass values for Earth as 

the primary body, and the moon as the secondary, the three real roots of eqn (12-15) are 

found to be; (0.8380, 1.1500, -1.0050) [Ref 14].  The specific normalized x coordinates 

of the libration points for the Earth-Moon system are then shown below; 

L1= ( 0.8380, 0, 0)   L2= ( 1.1500, 0, 0 )  L3= ( -1.0050, 0, 0) 

Equations (9) and (10) can also be used to find the L4 and L5 Lagrange points by 

setting r1 = r2 = 1.  Lagrange found the general location of these stable points based on 

the geometry of equilateral triangles [Ref 13,14,15] formed by the primary and secondary 

bodies of the system as shown in Figure 14; 

L4 = ( 1 2, 3 2,0µ −  ) L5 = ( 1 2, 3 2,0µ − − ) 

L5

L4

B

L5

L4

B

 
Figure 15.   L4 and L5 Libration Point Geometry 

 

For the Earth-Moon System theses coordinates are defined in scaled units as 

(0.4879, 0.8660, 0), and (0.4879, -0.8660, 0) respectively.  Specific libration point 

locations for the Earth-Moon System in terms of scaled units and actual kilometers are 

summarized in Table 2 on the following page.  
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ZActualYActualXPoint

-0.8660
0.8660

0
0
0
0

Scaled

0.4879
0.4879
-1.0050
1.1500
0.8380

0
Scaled

0332,890187,550L4
0-332,890187,550L5

00386,320L3
00442,060L2
00322,120L1
000Barycenter

(km)(km)
ZActualYActualXPoint

-0.8660
0.8660

0
0
0
0

Scaled

0.4879
0.4879
-1.0050
1.1500
0.8380

0
Scaled

0332,890187,550L4
0-332,890187,550L5

00386,320L3
00442,060L2
00322,120L1
000Barycenter

(km)(km)

 
Table 2. Earth-Moon System Libration Point Numerical Coordinates 
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IV. OPTIMAL CONTROL PROBLEM AND ORBIT 
DESIGN 

The solution to any optimal control problem is generally attained by “solving for 

the state and control histories of a system subject to constraints while minimizing (or 

maximizing) some performance index.” [Ref 17] DIDO is an optimization software 

package [Ref 18] that runs within an existing MATLAB program, it “employs a powerful 

direct Legendre pseudospectral method that exploits the sparsity pattern of the discrete 

Jacobian by way of the Nonlinear Programming solver SNOPT” [Ref 19].  After 

formulating a general problem, a user makes inputs using basic MATLAB functions and 

files according to the appropriate DIDO format.  This format or setup primarily consists 

of basic optimizing building blocks including dynamics, constraints, events, bounds, and 

cost that make up various sub-files and are mapped back to the main solution file.     

For simplicity, a dual approach was used to tackle this problem.  First, an optimal 

solution of an orbit about the L4 libration point was sought, since this is a stable point 

where a solution is more easily obtained than an unstable point.  Next, the problem was 

restructured to exploit the potential for trajectories about the unstable L2 libration point.   

 

 
Figure 16.   Regions of xy Motion for the Earth-Moon System [From: Ref 14] 
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Figure 16 illustrates the differences between the zero motion regions about the libration 

points of the Earth-Moon system in the x-y and x-z planes.  In this figure, motion across 

curves (C) of lesser value may only be attained with additional thrust. 

 

A. DYNAMICS 
The restricted three body equations of motion (eqns 1-3) determine the dynamics 

of the problem. These dynamics reside in an exclusive sub-file that contains the equations 

of motion.  In the dynamic constraint τ , is an independent variable, which is usually but 

not necessarily time [Ref 20].    

State vector x =   Control vector u = 

X

Y

Z

X

Y

Z

r
r
r
v
v
v

 
 
 
 
 
 
 
 
  

X

Y

Z

a
a
a

 
 
 
  

  

X

Y

Z

X

Y

Z

X

Y

Z

r x
r y
r x
v x
v y

zv
xa
ya
za

   
   
   
   
   
   
   =
   
   
   
   
   
   

  

 

( ) ( ( ), ( ), )x f x uτ τ τ τ=     eqn (16) 

 

B. EVENT CONDITIONS 
The event conditions for the problem are established by assigning values to the 

initial (0) and final (F) values of the states or boundary conditions.  For this problem, it 

was not necessary to assign any particular value to these events.  Instead, it was important 

that the initial and final events equal each other, meaning that the final position of the 

spacecraft match it’s starting position in order to signify a completed orbit.    

rX0 - rXF = 0  vX0 - vXF = 0 

rY0 - rYF = 0  vY0 – vYF = 0 

rZ0 - rZF = 0  vZ0 – vZF = 0 
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In order to ensure the initial and final conditions are equal, the value of each event 

condition is set to zero in the main file by setting the both the upper and lower bounds of 

the event conditions to zero.  

 

C. GUESSES 
Initial guesses are required for the initial and final conditions of the states, 

controls, and time in the DIDO problem formulation.  The guess does not necessarily 

need to be feasible, and can be a simple estimate or prediction.  However, in the unstable 

libration point solutions, a reasonable guess was essential because of its extreme 

sensitivity.  In this case, where the user may not be confident in the reasonability of the 

guess, a “bootstrapping” technique may be used and is applied to this problem.  In this 

process an initial iteration is run using a small number of nodes.  This initial run may 

output a crude or sub-optimal solution, but is usually more reasonable than the guess.  

This output is fed back through the optimization process again, where this initial solution 

is used as the guess for the second iteration.  The initial guesses for this problem are 

scaled and defined in Table 3 below.  Guesses for time were based on π and 2π , which 

are typical periods for halo orbits [Ref 10,12].  

States Initial Final Initial Final Initial Final Initial Final
rX 0.4879 0.4879 0.4883 0.4883 1.1500 1.1500 1.0505 1.0505
rY 0.8660 0.8660 0.8659 0.8659 0 0 -0.1465 -0.1465
rZ 0 0 -0.0018 -0.0018 0 0 0.0000 0.0000
vX 0 0 0.0003 0.0003 0 0 -0.0191 -0.0191
vY 0 0 0.0001 0.0001 0 0 0.1889 0.1889
vZ 0 0 0 0 0 0 0.0000 0.0000

aX 0 0 0.0063 0.0059 0 0 0.0002 -0.0006
aY 0 0 0.0063 0.0060 0 0 0.0002 0.0022
aZ 0 0 0.0058 0.0058 0 0 0.0006 0.0006

Time 0 6.2832 0 6.2832 0 3.1416 0 3.6637

Controls

Guesses
Stable Solution Unstable Solution

Initial Iteration Second Iteration Initial Iteration Second Iteration

 
Table 3. Guesses for Optimal Solution 
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D. BOUNDARY CONSTRAINTS 

The events, states, controls of the problem are all assigned lower and upper 

bounds in the main program file in order to specifically define the problem and ensure 

feasible solutions are achieved.  As discussed in Section B, the equations defined under 

the event conditions were set to equal zero such that there was no difference between the 

initial and final conditions.  All values of the states, and controls, in which the DIDO 

optimization software could explore for a solution were constrained, so that the scope of 

the problem was restricted within the vicinity of the desired solution.  These constraints 

were chosen to ensure that the output was in fact an orbit about the appropriate libration 

point, and did not allow the spacecraft to venture towards an orbit of the Earth, Moon, or 

another libration point by performing an unnecessary thrusting maneuver.  An example of 

an improperly bounded problem is shown in Figure 15 below, where the solution seeks a  

BB

 
Figure 17.   Unbounded Trajectory 

 

18 



trajectory about the Earth and system barycenter (B) after orbiting the moon although it 

began at the unstable L2 libration point.  Though not optimized, this trajectory might 

prove useful in obtaining a solution for a low thrust transfer trajectory from Earth to a 

Halo orbit insertion orbit about the L2 libration point of the Earth-Moon system and has 

been previously presented in [Ref 11] and is shown below in Figure 18.     
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Figure 18.   Libration Point Orbit Insertion [From: Ref 11] 

 

Constraints on the events, states, and controls are expressed in eqns (17-19) [Ref 

20] respectively, and all upper and lower level bounds, including time, are scaled and 

listed in Tables 4 and 5 on the following page.    
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0 0( ( ), ( ), , )l fe e x x ef uτ τ τ τ≤ ≤

u

    eqn (17) 

( )lx x xτ≤ ≤       eqn (18) 

( )lu u uuτ≤ ≤       eqn (19) 

 

Time Lower Upper
0 10000

Control Lower Upper
aX -5.0 5.0
aY -5.0 5.0
aZ -5.0 5.0

Bounds for Time and Controls

 
Table 4. Time and Control Bounds 

 

States Lower Upper Lower Upper Events Lower Upper
rX 0.7 1.1 1.0 1.5 rX0 - rXF 0 0
rY 0.3 0.7 -0.5 0.5 rY0 – rYF 0 0
rZ -0.5 0.5 -0.5 0.5 rZ0 – rZF 0 0
vX -10 10 -10 10 rX0 - rXF 0 0
vY -10 10 -10 10 rY0 – rYF 0 0
vZ -10 10 -10 10 rZ0 – rZF 0 0

Unstable Solution
Bounds for States and Events

Stable and Unstable SolutionStable Solution

 
Table 5. State and Event Bounds 

 

E. NODES 
The nodes represent markers or discrete points that define the states and controls 

throughout the problem.  In general, using a higher number of nodes produces a more 

accurate solution and takes longer computational time.  Initially, a lower number of nodes 

(approximately 100) was used for the crude preliminary solution and was fed into the 

following iteration via the bootstrap technique.  For the seconds iteration a higher number 

of nodes was used (approximately 200) since the guess was more accurate, and therefore 

led to a more smooth and precise solution.  As the problem was further explored and 

refined a higher number of nodes was used for the initial and bootstrapped solution 

respectively, which was actually applied to for both the stable and unstable solutions.    
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F. KNOTS 
Knots are used in DIDO as a part of the optimization process and are used where 

there exists a potential for discontinuities in the intermediaries of the problem and 

typically at the end point conditions.  In order to satisfy the solution format, the location, 

definition, upper and lower bounds must all be identified.  The number of nodes used in 

obtaining a solution is also defined in terms of these knots.  For this problem, knot 

locations were assigned to the initial and final values of time (t0, tF) and were defined as 

‘hard.’  Upper and lower knot bounds were also defined for t0 and tF.  The value of the 

node knot number was set to the corresponding number of nodes for both the initial and 

bootstrap solution, as discussed in the previous section.        

  

G. COST 
The key performance parameter by which the solution is measured is prioritized 

by the cost function.   The minimization of a particular performance index is given in the 

form of the Bolza cost function, 

0

0 0 0[ ( ), ( ), , ] ( ( ), ( ), , ) ( ( ), ( ), ),
f

f f fJ x u E x x F x u d
τ

τ

τ τ τ τ τ τ τ τ τ⋅ ⋅ = + ∫ τ  eqn (20) 

where E is the end point cost, and evaluates the cost function at boundary times and F is 

the integral cost and is evaluated over the time history of the function [Ref 20].  

Ultimately this function is selected by the preference of the user, but two typical indices 

of optimality are minimum fuel and minimum time.     

Conserving or minimize fuel expenditures is nominally a standard priority for any 

space mission.  This is accomplished by minimizing control functions and thrust 

requirements within the propulsion budget of a spacecraft.  In order to get x independent 

of the propulsion system, the following quadratic cost is used.  It is important to note that 

there are multiple solutions of optimality to a problem, and that true optimality is only 

defined by the preference of the user or customer.   

0

2 2 2

0

1 ( )
( )

f

x y z
f

J a a
t t

τ

τ

a dτ= + +
− ∫   eqn (21) 
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H. PATH CONSTRAINT 
In some optimization problems it is necessary to impose a mixed state control in 

seeking a solution.  However, a path constraint was not required for this problem and was 

therefore left unspecified.   
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V. STABLE HALO ORBIT RESULTS 

A. STABLE L4 SOLUTION  

Due to the complexity of obtaining the solution for the unstable Lagrange points 

(L1, L2, L3), an orbit solution set was first found for a stable Lagrange point, 

specifically, L4.  The initial solutions were propagated without a control function in order 

to verify Keplerian behavior, and are shown in following figures.  Figures 19 and 20 

represent the stable orbit solutions at L4 with no control functions and state boundaries 

imposed.  These orbits are propagated out over a period of 100 consecutive periods and it 

demonstrates how the orbit expands.  Figure 21 shows a bounded solution with no control 

propagated for approximately ten revolutions.    

1. Zero Control Solutions 
 

 
Figure 19.   Unbounded 3D Solution– Zero Control 
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Figure 20.   Unbounded 2D (xy plane) Solution– Zero Control 
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Figure 21.   Family of Orbits for Bounded Solution  – Zero Control 



2. Controlled Solution 
The solution for the constrained and controlled orbit about the stable L4 libration 

point is shown below in Figure 22 in the xy plane, and again in Figure 26 with respect to 

the Moon.  The orbit is also shown relative to the position of the moon in the last figure 

of this section.  These solutions were obtained using the quadratic cost function, and were 

locally optimal. 

 
Figure 22.   Stable L4 Libration Point Orbit in the xy Plane 

 

The plots on the following pages include the state profiles in x-y-z, the respective 

velocities, and control functions for this particular solution all plotted against the 

normalized time, which were the nodes.  For this solution set, one orbit corresponds to 

approximately 2π , and each plot reflects the periodicity of this time scale.  It should be 

noted that the profiles in the z coordinate appear erratic, due to their scale, which is 

several orders of magnitude lower than the x, and y coordinates.   
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Figure 23.   XYZ Profiles  

 

 
Figure 24.   Velocity Profiles in XYZ 
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Figure 25.   Controls 

 

L4L4

 
Figure 26.   Stable L4 point orbit with Respect to Moon  
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B. VALIDATION 
In order to verify the feasibility of the solution, the control solution generated by 

the DIDO optimizer is propagated through an ordinary differential equation solver using 

the same restricted three body equations of motion.  The MATLAB function ODE 45, 

with the linear interpolation of the controls was used in this case.  Figure 27 shows the 

comparison between the propagator solution shown in red and the DIDO trajectories in 

blue.  Numerically, this difference in variation between the solutions is on the order of 

zero to 1.1 kilometers.    

 

 
Figure 27.   Propagator Comparisons 
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For this problem, it can be shown that the Hamiltonian plot is flat and near zero. 

The general Hamiltonian expression is shown in eqn (23) below followed by the 

Hamiltonian plot for this specific solution. In eqn (22) λ  represents the Lagrange 

multipliers or costates, which are internal to the DIDO optimization solution [Ref 20].    

 

( , , , ) ( ( ), ( ), ) ( ( ), ( ), )TH x u F x u f x uλ τ τ τ τ λ τ τ τ= + i   eqn(22) 

 

  
Figure 28.   Hamiltonian for Stable L4 Libration Point Orbit Solution 
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VI. UNSTABLE HALO ORBIT RESULTS 

A. UNSTABLE L2 SOLUTION 

Once the stable solutions were attained, the orbits for the unstable points were 

tackled with greater ease and some success.  Because of the difference in location and 

stability, the L2 solution required different boundary conditions and guesses, but similar 

constraints.  These values were presented with the orbit design in Section IV along with 

the stable solution values.  As mentioned before, a reasonable guess for this solution was 

necessary in order to achieve feasible results.  Unlike the stable orbit, it was even 

necessary to change the structure of the guess to resemble an orbit in the form of a circle 

for a feasible unstable solution.  Making a circular guess about the unstable point, L2, 

encouraged a similar solution about the libration point.  All solutions for the unstable 

points were found to be locally optimal and had a period that corresponded to π .  

Solutions in the similar format presented in Section V are shown below; 

 
Figure 29.   Unstable L2 Libration Point Orbit in the XY plane 
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Figure 30.   XYZ Profiles 

 

 
Figure 31.   XYZ Velocity Profile 

32 



 
Figure 32.   Controls for Unstable Orbit Solution about L2 Libration Point 

 

 
Figure 33.   Unstable L2 Orbit with Respect to Moon 
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B. VALIDATION 
The validity of the unstable point solution was conducted in the same manner as 

the stable solution.  The control solution generated by the DIDO optimizer was 

propagated through the ODE 45 solver, with the linear interpolation of the controls was 

used in this case.  Figure 34 shows the comparison between the propagator solution 

shown in red and the DIDO trajectories shown in blue.  The error between the DIDO 

solution and the propagator was comparable to the stable solution error.  The Hamiltonian 

is shown on the following page in Figure 35.  Again, this solution was obtained by using 

an initial circle guess solution of 100 nodes, followed by a “bootstrapped” solution of 200 

nodes.   

 

 
Figure 34.   Unstable L2 Libration Point Propagator Comparison 
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Figure 35.   Hamiltonian for Unstable L2 Libration Point Solution  
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VII. CONCLUSIONS AND FUTURE WORK 

Libration points provide additional locations for spacecraft orbits with no 

obstructions or interruptions in coverage due to eclipse, which are observed in traditional 

orbits.  The design of such orbits is particularly desirable for low thrust [Ref 21] vehicles 

since small thrust magnitudes on the order of 2 to 3 x 10-3 m/s2 are required to maintain 

orbit.   Unstable libration points demand more stringent control functions than the stable 

points, which are more sensitive to slight deviations and perturbations, would require 

accelerations on the order of 10-4 and 10-5 m/s2.     

Future work related to this thesis might include the incorporation and 

optimization of the departure trajectory from Earth orbit into a Halo orbit insertion, which 

would also be required to complete a mission to any libration point.  Additionally, the 

design of a low thrust control system or model might be explored based on the 

requirements dictated by the controls of the DIDO optimization software for orbits about 

the libration points. 
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